SPACE

Finding Aliens on Dying Planets

This chart shows star temperatures vs. stellar flux showing various zones including Earth. Credit: Chester Harmon Scientists should ta...

27 Nov 2013 | 1 comments | Read more

New Moon Probe Raises Questions About What to Do Next in Space

Terry Zaperach/NASA, via Agence France-Presse — Getty Images Engineers at a NASA site in Virginia preparing an unmanned craft for its...

01 Sep 2013 | 0 comments | Read more
HEALTH

Woman gets pregnant seven years after ovaries removed

Scientists from Melbourne IVF and the Royal Women's hospital helped a woman who had both her ovaries removed get pregnant. Australian ...

05 Sep 2013 | 0 comments| Read more

$1 Syphilis Test To Make Diagnosis Readily Available Throughout Latin America

Syphilis has become a serious health issue (again) in Latin American countries, with 3 million cases. Every year 330,000 pregnant women w...

03 Sep 2013 | 0 comments| Read more

Global Analysis Shows Cardiac Stents Beneficial in Women

Cardiac stents to open blocked heart arteries and reduce chest pain have been used for decades. However, cardiologists have never been ce...

03 Sep 2013 | 0 comments| Read more

Menthol Cigrettes are getting more Popular among Young People

A new study on mentholated cigarette use in the U.S. finds an increase in menthol cigarette smoking among young adults and concludes th...

30 Aug 2013 | 0 comments| Read more
TECHNOLOGY

Microsoft buys Nokia smartphones, services in $7.2B deal

Microsoft CEO Steve Ballmer speaks during a press conference on the company's deal with Finnish mobile manufacturer Nokia in Espoo, ...

03 Sep 2013 | 0 comments| Read more

Facebook aims for piece of big TV ad budgets

Even before Facebook begins displaying splashy video ads, it's preparing for a backlash from users like Amy Pittel. The 44-year...

03 Sep 2013 | 0 comments| Read more

Apple reportedly releasing new iPads after iPhone

Apple will launch its new iPad and iPad mini ahead of the "holiday shopping season," according to a new report. Citing unnamed sources...

13 Aug 2013 | 0 comments| Read more

Glasses Free 3D: More freedom of movement while viewing glasses-free 3-D

A new image processing technique automatically calculates where the viewer is located in front of the television. The user can move a...

13 Aug 2013 | 0 comments| Read more
EARTH AND CLIMATE

Atmosphere's Emission Fingerprint Affected By How Clouds Are Stacked

Clouds, which can absorb or reflect incoming radiation and affect the amount of radiation escaping from Earth's atmosphere, remain the g...

03 Sep 2013 | 0 comments| Read more

Fact of the day!

Today’s science fact is about the Texan Horned Lizard.

This lizard deters predators by shooting its own blood into their face. Out of its eyes. Apparently the blood taste......Learn More!

BIOLOGY

New 'Walking' Shark Species

The newfound species of walking shark, Hemiscyllium Halmahera, grows up to 27 inches (70 centimeters) long and is harmless to humans. ...

31 Aug 2013 | Read more
PLANTS AND ANIMALS

Birds choose sweet-smelling mates

In a first-of-its-kind study, a Michigan State University researcher has demonstrated that birds communicate via scents, and that odo...

04 Sep 2013 | Read more
PHYSICS AND CHEMISTRY

Polymer gel, heal thyself: University of Pittsburgh engineering team proposes new composites that can regenerate when damaged

In the computer simulation, the composite is cut (far left) and the nanorods begin migration to the cut interface. In the third image, t...

27 Nov 2013 | Read more
EARTH AND CLIMATE

Atmosphere's Emission Fingerprint Affected By How Clouds Are Stacked

Clouds, which can absorb or reflect incoming radiation and affect the amount of radiation escaping from Earth's atmosphere, remain the g...

03 Sep 2013 | Read more
STRANGE SCIENCE

Why Do U.S. Behavioral Science Researchers Keep Skewing Their Results?

Mad Science J.J. via Wikimedia Commons Despite its lofty ideals, science isn't always impartial and unbiased. S...

31 Aug 2013 | Read more
GUEST POSTS

The 20 big questions in Science

 From the nature of the universe (that's if there is only one) to the purpose of dreams, there are lots of things we still don't k...

02 Sep 2013 | Read more
SCIENCE FICTION

Science Fiction - The Engine Behind Summer Blockbusters

Aldric Chang The tradition of anticipating (Western) summertime full-length feature films with the best special effects spectacle fro...

28 Jan 2013 | Read more
SCIENCE VIDEOS

Today's Video

Read Whole Article Click Here!

Clinging to crevices, E. coli thrive: Study reveals role of flagellum in helping biofilms colonize rough surfaces

Rather than being repelled by nanostructured surfaces, as materials scientists have hoped, bacteria with many flagella seem to love them. Credit: False-color scanning electron micrograph courtesy of Ronn Friedlander and Michael Bucaro
Rather than being repelled by nanostructured surfaces, as materials scientists have hoped, bacteria with many flagella seem to love them. Credit: False-color scanning electron micrograph courtesy of Ronn Friedlander and Michael Bucaro

New research from Harvard University helps to explain how waterborne bacteria can colonize rough surfaces -- even those that have been designed to resist water. A team of materials scientists and microbiologists studied the gut bacterium Escherichia coli, which has many flagella that stick out in all directions. The researchers found that these tails can act as biological grappling hooks, reaching far into nanoscale crevices and latching the bacteria in place.
The scourge of the health care industry, bacteria like E. coli are adept at clinging to the materials used in medical implants like pacemakers, prosthetics, stents, and catheters, spreading slimy biofilm and causing dangerous infections. The findings, published in the Proceedings of the National Academy of Sciences (PNAS) on March 18, suggest that antibacterial materials should incorporate both structural and chemical deterrents to bacterial attachment.
E. coli are equipped with two types of appendages: pili, which are short, sticky hairs, and the whip-like flagella, which are often twice as long as the bacterium itself. Pili had previously been recognized as playing a critical role in the formation of biofilms. These short hairs, up to only a micron in length in E. coli, can stick to surfaces temporarily, while the bacteria secrete a thick slime that holds them permanently in place.
Flagella, on the other hand, typically play a propulsive role, helping bacteria to swim and steer in liquid environments. As it turns out, though, when it's time to settle in one place, flagella also contribute to adhesion on rough surfaces, where the pili would have access to fewer attachment points.
Nanoscale crevices, such as those deliberately built into superhydrophobic materials, often trap air bubbles at the surface, which initially prevent E. coli from attaching at all. The new research shows that the bacteria can gradually force these bubbles to disperse by, essentially, flailing their arms. Once the cracks and crevices are wet, although the cell bodies can't fit into the gaps, the flagella can reach deep into these areas and attach to a vast amount of new surface area.
"The diversity of strategies and methods by which bacteria can adhere reflects their need to survive in a huge variety of environments," says lead author Ronn S. Friedlander, a doctoral student in the Harvard-MIT Division of Health Sciences and Technology. "Of course, if we could prevent biofilms from forming where we didn't want them to, there would be immense benefits in medicine."
Friedlander studies in the lab of Harvard professor Joanna Aizenberg, who holds a joint appointment as Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences and as Professor of Chemistry and Chemical Biology (CCB). Aizenberg's laboratory group has been working to develop extremely slippery surfaces that repel water, dirt, oil, and bacteria.
The surface chemistry of antibacterial materials appears to be just as important as the topography. E. coli flagella have previously been known to adhere to certain proteins on the surface of cells in the gut wall, indicating that the bacteria are capable of bonding with specific molecular matches. But in the 1970s, biologists observing E. coli on microscope slides had also seen something curious: bacteria wheeling about under the coverslip, as if tethered to the glass by a single flagellum. This ability to stick to any surface at all -- termed nonspecific adhesion -- is part of what makes it easy for bacteria to survive on the surface of medical implants.
Rather than having to find a perfect molecular match, the flagella of E. coliappear to cling to surfaces using a combination of many weak bonds.
"The ideal antibacterial material would be topographically patterned with tiny crevices to limit the amount of surface area that was immediately accessible to bacteria via their pili, but also engineered in terms of its surface chemistry to reduce the ability of the flagella to make bonds within those crevices," says Aizenberg. "Surface structuring alone will not achieve this goal."
In 2012, Aizenberg's group demonstrated a material they call SLIPS (for Slippery, Liquid-Infused Porous Surfaces). It was patterned with nanoscale pores, which were filled with a fluorinated lubricant that was shown to prevent biofilms from attaching.
The findings from this line of research are relevant beyond the field of medicine, as biofilms also pose problems for the food industry, water treatment, ship maintenance, and other industries where slime can clog pipes and filters, corrode metal, or cause contamination. But this latest work also helps to explain, on a basic level, how bacteria succeed at colonizing such a wide variety of environments, including the human gut. Having many flagella, the authors note in their paper, "may be particularly important in an intestinal environment coated with microvilli."
In addition to her appointments at Harvard SEAS and CCB, Aizenberg is Director of the Kavli Institute for Bionano Science and Technology at Harvard; a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard; and Director of the Science Programs at the Radcliffe Institute for Advanced Study; among other roles at the University.
Coauthors included Hera Vlamakis, an instructor in microbiology and molecular genetics at Harvard Medical School; Philseok Kim, a researcher at the Wyss Institute; Mughees Khan, a staff scientist in nanofabrication at the Wyss Institute; and Roberto Kolter, Professor of Microbiology and Immunobiology at Harvard Medical School.
The research was supported in part by the U.S. Office of Naval Research (N00014-11-1-0641), the BASF Advanced Research Initiative at Harvard University, and a National Science Foundation (NSF) Graduate Research Fellowship. The researchers also benefited from the facilities of the Massachusetts Institute of Technology's Microsystems Technology Laboratories and the Harvard Center for Nanoscale Systems, a member of the NSF-supported National Nanotechnology Infrastructure Network (ECS-0335765).

Source: Harvard School of Engineering and Applied Sciences


Posted by Unknown on Thursday, April 11, 2013. Filed under . You can follow any responses to this entry through the RSS 2.0

0 comments for Clinging to crevices, E. coli thrive: Study reveals role of flagellum in helping biofilms colonize rough surfaces

Leave comment

Featured slider

Photo Gallery

Designed by Solaranlagen | with the help of Bed In A Bag and Lawyers
Blogging tips