SPACE

Finding Aliens on Dying Planets

This chart shows star temperatures vs. stellar flux showing various zones including Earth. Credit: Chester Harmon Scientists should ta...

27 Nov 2013 | 1 comments | Read more

New Moon Probe Raises Questions About What to Do Next in Space

Terry Zaperach/NASA, via Agence France-Presse — Getty Images Engineers at a NASA site in Virginia preparing an unmanned craft for its...

01 Sep 2013 | 0 comments | Read more
HEALTH

Woman gets pregnant seven years after ovaries removed

Scientists from Melbourne IVF and the Royal Women's hospital helped a woman who had both her ovaries removed get pregnant. Australian ...

05 Sep 2013 | 0 comments| Read more

$1 Syphilis Test To Make Diagnosis Readily Available Throughout Latin America

Syphilis has become a serious health issue (again) in Latin American countries, with 3 million cases. Every year 330,000 pregnant women w...

03 Sep 2013 | 0 comments| Read more

Global Analysis Shows Cardiac Stents Beneficial in Women

Cardiac stents to open blocked heart arteries and reduce chest pain have been used for decades. However, cardiologists have never been ce...

03 Sep 2013 | 0 comments| Read more

Menthol Cigrettes are getting more Popular among Young People

A new study on mentholated cigarette use in the U.S. finds an increase in menthol cigarette smoking among young adults and concludes th...

30 Aug 2013 | 0 comments| Read more
TECHNOLOGY

Microsoft buys Nokia smartphones, services in $7.2B deal

Microsoft CEO Steve Ballmer speaks during a press conference on the company's deal with Finnish mobile manufacturer Nokia in Espoo, ...

03 Sep 2013 | 0 comments| Read more

Facebook aims for piece of big TV ad budgets

Even before Facebook begins displaying splashy video ads, it's preparing for a backlash from users like Amy Pittel. The 44-year...

03 Sep 2013 | 0 comments| Read more

Apple reportedly releasing new iPads after iPhone

Apple will launch its new iPad and iPad mini ahead of the "holiday shopping season," according to a new report. Citing unnamed sources...

13 Aug 2013 | 0 comments| Read more

Glasses Free 3D: More freedom of movement while viewing glasses-free 3-D

A new image processing technique automatically calculates where the viewer is located in front of the television. The user can move a...

13 Aug 2013 | 0 comments| Read more
EARTH AND CLIMATE

Atmosphere's Emission Fingerprint Affected By How Clouds Are Stacked

Clouds, which can absorb or reflect incoming radiation and affect the amount of radiation escaping from Earth's atmosphere, remain the g...

03 Sep 2013 | 0 comments| Read more

Fact of the day!

Today’s science fact is about the Texan Horned Lizard.

This lizard deters predators by shooting its own blood into their face. Out of its eyes. Apparently the blood taste......Learn More!

BIOLOGY

New 'Walking' Shark Species

The newfound species of walking shark, Hemiscyllium Halmahera, grows up to 27 inches (70 centimeters) long and is harmless to humans. ...

31 Aug 2013 | Read more
PLANTS AND ANIMALS

Birds choose sweet-smelling mates

In a first-of-its-kind study, a Michigan State University researcher has demonstrated that birds communicate via scents, and that odo...

04 Sep 2013 | Read more
PHYSICS AND CHEMISTRY

Polymer gel, heal thyself: University of Pittsburgh engineering team proposes new composites that can regenerate when damaged

In the computer simulation, the composite is cut (far left) and the nanorods begin migration to the cut interface. In the third image, t...

27 Nov 2013 | Read more
EARTH AND CLIMATE

Atmosphere's Emission Fingerprint Affected By How Clouds Are Stacked

Clouds, which can absorb or reflect incoming radiation and affect the amount of radiation escaping from Earth's atmosphere, remain the g...

03 Sep 2013 | Read more
STRANGE SCIENCE

Why Do U.S. Behavioral Science Researchers Keep Skewing Their Results?

Mad Science J.J. via Wikimedia Commons Despite its lofty ideals, science isn't always impartial and unbiased. S...

31 Aug 2013 | Read more
GUEST POSTS

The 20 big questions in Science

 From the nature of the universe (that's if there is only one) to the purpose of dreams, there are lots of things we still don't k...

02 Sep 2013 | Read more
SCIENCE FICTION

Science Fiction - The Engine Behind Summer Blockbusters

Aldric Chang The tradition of anticipating (Western) summertime full-length feature films with the best special effects spectacle fro...

28 Jan 2013 | Read more
SCIENCE VIDEOS

Today's Video

Read Whole Article Click Here!

Researchers evaluate Bose-Einstein condensates for communicating among quantum computers

(a) Physicists created a BEC that can persist at up to 1.5 times hotter than the critical temperature at which it normally decays. (b) The BEC can survive in the superheated regime for more than a minute when different components of the boson gas are not in equilibrium. Credit: Alexander L. Gaunt, et al. ©2013 Macmillan Publishers Limited
(a) Physicists created a BEC that can persist at up to 1.5 times hotter than the critical temperature at which it normally decays. (b) The BEC can survive in the superheated regime for more than a minute when different components of the boson gas are not in equilibrium. Credit: Alexander L. Gaunt, et al. ©2013 Macmillan Publishers Limited

Quantum computers promise to perform certain types of operations much more quickly than conventional digital computers. But many challenges must be addressed before these ultra-fast machines become available, among them, the loss of order in the systems -- a problem known as quantum decoherence -- which worsens as the number of bits in a quantum computer increases. One proposed solution is to divide the computing among multiple small quantum computers that would work together much as today's multi-core supercomputers team up to tackle big digital operations. The individual computers in such a system could communicate quantum information using Bose-Einstein condensates (BECs) -- clouds of ultra-cold atoms that all exist in exactly the same quantum state. The approach could address the decoherence problem by reducing the number of bits necessary for a single computer.
Now, a team of physicists at the Georgia Institute of Technology has examined how this Bose-Einstein communication might work. The researchers determined the amount of time needed for quantum information to propagate across their BEC, essentially establishing the top speed at which such quantum computers could communicate.
"What we did in this study was look at how this kind of quantum information would propagate," said Chandra Raman, an associate professor in Georgia Tech's School of Physics. "We are interested in the dynamics of this quantum information flow not just for quantum information systems, but also more generally for fundamental problems in physics."
The research is scheduled to be published in the April 19 online version of the journal Physical Review Letters. The research was funded by the U.S. Department of Energy (DOE) and the National Science Foundation (NSF). The work involved both an experimental physics group headed by Raman and a theoretical physics group headed by associate professor Carlos Sa De Melo, also in the Georgia Tech School of Physics.
The researchers first assembled a gaseous Bose-Einstein condensate that consisted of as many as three million sodium atoms cooled to nearly absolute zero. To begin the experiment, they switched on a magnetic field applied to the BEC that instantly placed the system out of equilibrium. That triggered spin-exchange collisions as the atoms attempted to transition from one ground state to a new one. Atoms near one another became entangled, pairing up with one atom's spin pointing up, and the other's pointing down. This pairing of opposite spins created a correlation between pairs of atoms that moved through the entire BEC as it established a new equilibrium.
The researchers, who included graduate student Anshuman Vinit and former postdoctoral fellow Eva Bookjans, measured the correlations as they spread through the cloud of cold atoms. At first, the quantum entanglement was concentrated in space, but over time, it spread outward like drop of dye diffuses through water.
"You can imagine having a drop of dye that is concentrated at one point in space," Raman said. "Through diffusion, the dye molecules move throughout the water, slowly spreading throughout the entire system."
The research could help scientists anticipate the operating speed for a quantum computing system composed of many cores communicating through a BEC.
"This propagation takes place on the time scale of ten to a hundred milliseconds," Raman said. "This is the speed at which quantum information naturally flows through this kind of system. If you were to use this medium for quantum communication, that would be its natural time scale, and that would set the timing for other processes."
Though relevant to communication of quantum information, the process also showed how a large system undergoing a phase transition does so in localized patches that expand to attempt to incorporate the entire system.
"An extended system doesn't move from one phase to another in a uniform way," said Raman. "It does this locally. Things happen locally that are not connected to one another initially, so you see this inhomogeneity."
Beyond quantum computing, the results may also have implications for quantum sensing -- and for the study of other physical systems that undergo phase transitions.
"Phase transitions have universal properties," Raman noted. "You can take the phase transitions that happen in a variety of systems and find that they are described by the same physics. It is a unifying principle."
Raman hopes the work will lead to new ways of thinking about quantum computing, regardless of its immediate practical use.
"One paradigm of quantum computing is to build a linear chain of as many trapped ions as possible and to simultaneously engineer away as many challenges as possible," he said. "But perhaps what may be successful is to build these smaller quantum systems that can communicate with one another. It's important to try as many things as possible and to keep an open mind. We need to try to understand these systems as well as we can."
This research was supported by the Department of Energy (DOE) through grant DE-FG-02-03ER15450 and by the National Science Foundation under grant PHY-1100179. The conclusions in this article are those of the principal investigator and do not necessarily represent the official views of the DOE or the NSF.

Source: Georgia Institute of Technology, Research Communications


Posted by Unknown on Saturday, April 13, 2013. Filed under . You can follow any responses to this entry through the RSS 2.0

0 comments for Researchers evaluate Bose-Einstein condensates for communicating among quantum computers

Leave comment

Featured slider

Photo Gallery

Designed by Solaranlagen | with the help of Bed In A Bag and Lawyers
Blogging tips